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Synthetic populations

Cross-sectional
▶ Snapshot of the population at a given point in time.

▶ Based on an observed real population (census).

▶ Share the same statistical properties as the real population.

▶ Includes the status of long-term mobility decisions: home and work location,
vehicle ownership, driver license ownership, etc.

▶ Feed into activity scheduling models.
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Multiperiod synthetic populations

Challenges

▶ Lack of panel data.

▶ Instead, repeated cross-sectional census data.

▶ Consistency (not necessarily the same individuals).

2010 2015 2020
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Traditional synthetic populations

Static
▶ Sex

▶ Age

▶ Income

▶ Employment status

▶ Level of education

▶ Home location

▶ Work location

▶ “Mobility tools” ownership

▶ Driver licence

▶ etc.

Dynamic

▶ Sex

▶ Age(t)

▶ Income(t)

▶ Employment status(t)

▶ Level of education(t)

▶ Home location(t)

▶ Work location(t)

▶ “Mobility tools” ownership(t)

▶ Driver licence(t)

▶ etc.
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Traditional synthetic populations
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Traditional synthetic populations

Static
▶ Iterative Proportional Fitting.

[Beckman et al., 1996]

▶ Combinatorial Optimization.
[Abraham et al., 2012]

▶ Simulation-based. [Farooq et al., 2013]

▶ Machine Learning.
[Xu and Veeramachaneni, 2018]

Dynamic

▶ Dynamic projection.
[Namazi-Rad et al., 2014]

▶ Static projection. [Lomax et al., 2022]

▶ Resampling.
[Prédhumeau and Manley, 2023]

▶ Hybrid approaches. [Kukic et al., 2023]

10 / 39



Outline

Motivation

Synthetic populations

Proposed methodology

Illustration

Conclusion

11 / 39



Bayesian approach

Bayes theorem

▶ A: distribution of individuals, B : data.

▶ We need to draw from A|B .
▶ Pr(A|B) = likelihood · prior.

Priors: models
▶ Survival/duration models.

▶ Behavior models.

▶ Demographic models, etc.

Data fusion: MCMC
▶ Gibbs sampling.

▶ Metropolis-Hastings.
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Proposed methodology

Variables
▶ Replace time dependent variables by time independent variables.

▶ Events and duration models.

▶ Examples:
▶ age(t). Event: birth. Duration: lifespan.
▶ home location(t). Event: last move. Duration: time until the next move.
▶ driver license(t). Event: acquisition of a driver license. Duration: time until

revocation.

Motivation
▶ Knowing birth date and lifespan, age(t) can be calculated for any t.

▶ Knowing the date of each move, home location(t) can be calculated for any
t.
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Mapping universal and time dependent variables

Universal variables
▶ Date of birth b (continuous).

▶ Life duration L (continuous).

Time dependent variables

▶ Being alive in 2010 x2010(b, L) (binary).

▶ Being alive in 2015 x2015(b, L) (binary).

▶ Being alive in 2020 x2020(b, L) (binary).

▶ Age in 2010 a2010(b, L) (continuous).

▶ Age in 2015 a2015(b, L) (continuous).

▶ Age in 2020 a2020(b, L) (continuous).
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Prior: Event and duration models
Examples

▶ b: date of birth. If [tb, te ] is the time horizon of interest,

Pr(b ≤ t) =
b − tb
te − tb

.

▶ L: lifetime (in years) of an individual. [Gompertz, 1833]: For ℓ ≥ 0,

Pr(L ≤ ℓ) = 1− exp

(
−b

exp(ηℓ)− 1

η

)
,

▶ b > 0 is the scale parameter (e.g. b = 0.0005),
▶ η > 0 is the shape parameter (e.g. η = 0.1).

▶ Age of driver license: [Tefft et al., 2014]
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Available data

▶ Repeated cross sectional census data.

▶ Distribution of a2010|x2010 = 1.

▶ Distribution of a2015|x2015 = 1.

▶ Distribution of a2020|x2020 = 1.
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Gibbs sampling

Objective
Generate draw from the random vector: (b, L)

Marginal distributions

▶ Draw from b|L.
▶ Draw from L|b.
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Birth date
For illustration, assume that we have only one data point: 2010

Pr(b = α|L) = Pr(a2010 = 2010− α|x2010 = 1, L) Pr(x2010 = 1|L)
+ Pr(a2010 = 2010− α|x2010 = 0, L) Pr(x2010 = 0|L)

▶ Pr(x2010 = 1|L), Pr(x2010 = 0|L): deterministic:

1[α ≤ 2010 < α+ L].

▶ Pr(a2010 = 2010− α|x2010 = 1, L): from the data.

▶ Pr(a2010 = 2010− α|x2010 = 0, L): use the prior. For instance, uniform
distribution on

b ∼ [tb, 2010− L[ ∪ ]2010, te ] or a2010 ∼ ]L, 2010− tb] ∪ [−te , 0[
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Lifespan

Pr(L = β|b)

▶ No information in the census data.

▶ It can be assumed that the lifespan does not depend on the date of birth.

▶ Therefore,
Pr(L = β|b) = Pr(L = β).

▶ Prior models can be used.
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Example

Pr(b = 1.1.1950|L = 66)

Deterministic life status

x2010 = 1, x2015 = 1, x2020 = 0.

Pr(b = 1.1.1950|L = 66) = Pr(a2010 = 60|x2010 = 1)Pr(a2015 = 65|x2015 = 1)
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Illustration

Synthetic universal variables: birth year, life duration, sex, driving license acquisition age.

Process: for each variable define the conditionals and draw from them using real data.

Data: MTMC from 2010 and 2020 [Swiss Federal Office of Statistics, 2023]

Synthetic Universal Data
Birth Lifespan Sex

Age
Driving

1986 50 M 18
2005 50 F 18
2005 11 M -1
1968 20 F 18

Real data
2010

Real data
2020

Pandemic

Update the first person
that is affected in 2015:

(1986, 29, M, 18)

Step 1:
Generate

Synthetic data
2015

Alive Age Sex
Driving
licence

0 29 M 1
1 10 F 0
1 10 M 0
0 20 F 1

Synthetic data
2010

Alive Age Sex
Driving
licence

1 24 M 1
1 5 F 0
1 5 M 0
0 20 F 1

Synthetic data
2020

Alive Age Sex
Driving
licence

0 29 M 1
1 15 F 0
0 11 M 0
0 20 F 1

Step 3: Derive
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Illustration

Derived variables: life status, age, sex, and driving license status.

Process: from universal variables we deterministically reconstruct derived variables.

Synthetic Universal Data
Birth Lifespan Sex

Age
Driving

1986 50 M 18
2005 50 F 18
2005 11 M -1
1968 20 F 18

Real data
2010

Real data
2020

Pandemic

Update the first person
that is affected in 2015:

(1986, 29, M, 18)

Step 1:
Generate

Synthetic data
2020

Alive Age Sex
Driving
licence

1 34 M 1
1 15 F 0
0 11 M 0
0 20 F 1

Synthetic data
2015

Alive Age Sex
Driving
licence

1 29 M 1
1 10 F 0
1 10 M 0
0 20 F 1

Synthetic data
2025

Alive Age Sex
Driving
licence

1 39 M 1
1 20 F 1
0 11 M 0
0 20 F 1

Step 2: Derive
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Illustration

Simulate impacts of hypothetical scenarios on the universal dataset.

Synthetic Universal Data
Birth Lifespan Sex

Age
Driving

1986 50 M 18
2005 50 F 18
2005 11 M -1
1968 20 F 18

Real data
2010

Real data
2020

Pandemic

Update the first person
that is affected in 2020:

(1986, 34, M, 18)

Step 1:
Generate

Step 3:
Simulate

Synthetic data
2015

Alive Age Sex
Driving
licence

0 29 M 1
1 10 F 0
1 10 M 0
0 20 F 1

Synthetic data
2010

Alive Age Sex
Driving
licence

1 24 M 1
1 5 F 0
1 5 M 0
0 20 F 1

Synthetic data
2020

Alive Age Sex
Driving
licence

0 29 M 1
1 15 F 0
0 11 M 0
0 20 F 1
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Illustration

Unexpected events applied to the universal dataset are reflected in all derived datasets.

Synthetic Universal Data
Birth Lifespan Sex

Age
Driving

1986 50 M 18
2005 50 F 18
2005 11 M -1
1968 20 F 18

Real data
2010

Real data
2020

Pandemic

Update the first person
that is affected in 2020:

(1986, 34, M, 18)

Step 1:
Generate

Step 3:
Simulate

Synthetic data
2020

Alive Age Sex
Driving
licence

0 34 M 1
1 15 F 0
0 11 M 0
0 20 F 1

Synthetic data
2015

Alive Age Sex
Driving
licence

1 29 M 1
1 10 F 0
1 10 M 0
0 20 F 1

Synthetic data
2025

Alive Age Sex
Driving
licence

0 34 M 1
1 20 F 1
0 11 M 0
0 20 F 1

Step 4: Derive
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Illustration

Normal: Derived datasets from 2015 and 2025 without any pandemic.

Pandemic: Simulate on universal dataset 70% mortality for individuals over 50 in 2020, then
derive 2015 and 2025.

0 20 40 60 80

0

500

1,000

Age

F
re
q
u
en

cy

Normal scenario

0 20 40 60 80

Age

Pandemic scenario

Alive in 2015
Alive in 2025
Died by 2020

Looking at the two snapshots we can identify the moment of the pandemic.
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Illustration
How far apart should two datasets be to enable the detection of a pandemic?

Year of pandemic: t.

Time step: k.

t = 20202015 20252010 20302005 2035

k = 5k = 5

k = 10k = 10

k = 15k = 15

· · · · · ·
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Illustration
Compare death rates (DR) in normal and pandemic scenarios to evaluate the pandemic’s
impact at t = 2020.

DR =
Death % After− Death % Before

k

DRn: For normal scenario.

DRp: For pandemic scenario.

k DRn DRp DRp/DRn
5 0.17 0.94 5.5
10 0.87 1.18 1.4
15 1.16 1.32 1.1
20 1.33 1.43 1.1
25 1.48 1.54 1.0

Insights:

Pandemic is noticeable for small steps (e.g., k = 5, death rate is 5.5 times larger).

Larger steps hide the pandemic (e.g., k ≥ 25, rates are nearly identical).
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Generalization

Time independent priors

▶ Age(t): birthdate and life time.

▶ Income(t): income evolution models [Kaldasch, 2012].

▶ Employment status(t): choice of employment status [Kolvereid, 1996].

▶ Level of education(t): educational choice models [Manzo, 2013].

▶ Home location(t): last location, moving behavior [de Palma et al., 2015].

▶ Work location(t): firm relocation [Bodenmann and Axhausen, 2015].

▶ “Mobility tools” ownership(t): last vehicle, duration model [Gilbert, 1992].

▶ Driver licence(t): date of acquisition [Nurul Habib, 2018].

▶ etc.
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Bringing it all together

Methodology

▶ Identification of the time-dependent variables and their event/duration
counterparts.

▶ Identification of the prior models.

▶ Data fusion using MCMC algorithms.

▶ Result: synthetic population of individuals with time independent variables.

▶ Time dependent quantities can be directly derived from the time
independent ones.
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Conclusion

Current research
▶ Flexible methodology.

▶ Bayesian approach allows to combine models and data.

▶ Cross-sectional data can be integrated.

Future research
▶ Proof of concept and validation.

▶ Synthetic populations of households.

▶ Integration with activity-scheduling models.
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