#### **3rd Symposium on Activity-Based Modeling**

Raitenhaslach, Germany, December 2024

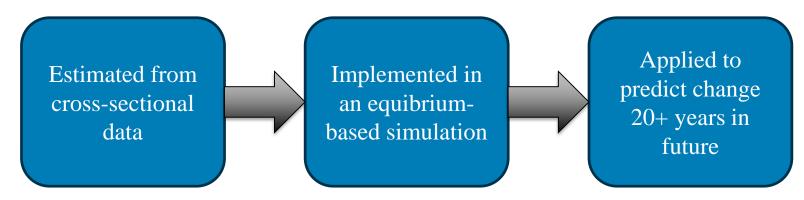
#### The Potential for Linked Longitudinal Data in Transportation Research

#### **Gregory D. Erhardt**

Department of Civil Engineering Martin School of Public Policy University of Kentucky

Senior Advisor, Bay Area Metro Hans Fischer Fellow, Technical University of Munich greg.erhardt@uky.edu With:

#### Pat Mokhtarian


Department of Civil Engineering Georgia Institute of Technology

#### **Chris Bollinger**

Department of Economics University of Kentucky



### **ABM Approach**



Many advantages, but several risks:

- **Possible self-selection:** I move to a walkable neighborhood because I like to walk.
- **Possible endogenity:** Transit operator adds service to popular routes.
- **Missing habits and triggers:** I started teleworking during the



#### With possible consequences

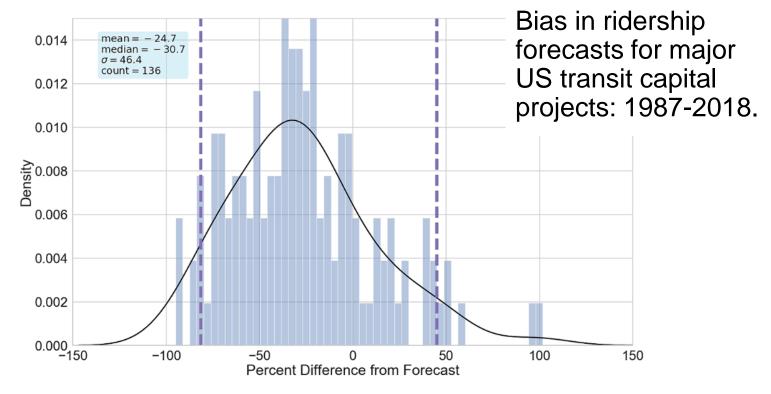



Fig. 2. Percent difference of observed ridership from forecast.

Hoque, et al 2024



## We build models to predict change. Let's start by observing the change we're trying to predict.

\* Actually, there are a lot of reasons we build models (Eptstein 2008), but this one is pretty important.

### Panel of convenience

- For repeated cross-sections, there is a non-zero probability that the same unit is sampled in more than one year.
- With a large enough cross-sectional sample, the "panel of convenience" becomes usable.
- Strategy used successfully in the Danish National Survey & Australian Census.



## **American Community Survey (ACS)**

- Annual survey of ~1.5% of US households with >90% response rates from 2005present.
- Includes home location, work location, usual commute mode, car ownership, etc.
- Restricted-use data includes individual records with a personal identification key (PIK) assigned to >90% of records.



|          |       | ~ -   |                      | ~                       |                  |                      |                   |                 |  |  |
|----------|-------|-------|----------------------|-------------------------|------------------|----------------------|-------------------|-----------------|--|--|
| addresse | Year  | Sub-  | Final                | Sampling                | Expec            | Expected Addresses 1 |                   | Resampled from: |  |  |
| S        |       | Frame | Interviews<br>in ACS | Rate within<br>Subframe | 5 Years<br>Prior | 10 Years<br>Prior    | 15 Years<br>Prior | Any Year        |  |  |
| resample | 2005  | 1     | 1,924,527            | 7.70%                   | 0                | 0                    | 0                 | 0               |  |  |
|          | 2006  | 2     | 1,968,362            | 7.70%                   | 0                | 0                    | 0                 | 0               |  |  |
| d        | 2007  | 3     | 1,937,659            | 7.50%                   | 0                | 0                    | 0                 | 0               |  |  |
|          | 2008  | 4     | 1,931,955            | 7.40%                   | 0                | 0                    | 0                 | 0               |  |  |
|          | 2009  | 5     | 1,917,748            | 7.30%                   | 0                | 0                    | 0                 | 0               |  |  |
|          | 2010  | 1     | 1,917,799            | 7.30%                   | 140,490          | 0                    | 0                 | 140,490         |  |  |
|          | 2011  | 2     | 2,128,104            | 8.00%                   | 157,469          | 0                    | 0                 | 157,469         |  |  |
|          | 2012  | 3     | 2,375,715            | 8.90%                   | 172,452          | 0                    | 0                 | 172,452         |  |  |
|          | 2013  | 4     | 2,208,513            | 8.30%                   | 160,352          | 0                    | 0                 | 160,352         |  |  |
|          | 2014  | 5     | 2,322,722            | 8.60%                   | 164,926          | 0                    | 0                 | 164,926         |  |  |
|          | 2015  | 1     | 2,305,707            | 8.50%                   | 163,013          | 163,585              | 0                 | 326,598         |  |  |
|          | 2016  | 2     | 2,229,872            | 8.20%                   | 174,505          | 161,406              | 0                 | 335,910         |  |  |
|          | 2017  | 3     | 2,145,639            | 7.80%                   | 185,306          | 151,137              | 0                 | 336,443         |  |  |
|          | 2018  | 4     | 2,143,000            | 7.70%                   | 170,056          | 148,761              | 0                 | 318,816         |  |  |
|          | 2019  | 5     | 2,059,945            | 7.40%                   | 171,881          | 141,913              | 0                 | 313,795         |  |  |
|          | 2020  | 1     | 1,406,935            | 5.00%                   | 115,285          | 95,890               | 96,226            | 307,402         |  |  |
|          | 2021  | 2     | 1,950,832            | 6.90%                   | 153,861          | 146,839              | 135,817           | 436,517         |  |  |
|          | 2022  | 3     | 1,980,550            | 6.91%                   | 148,343          | 164,250              | 133,964           | 446,558         |  |  |
|          | Total |       | 36,855,584           |                         | 2,077,940        | 1,173,781            | 366,007 🤇         | 3,617,728       |  |  |

Result: Longitudinal commute data that are:

- Cheap!
- Large sample
- Disaggregate
- Nationally representative...sort of.



## Inclusive of people living continously in the US over the panel period

| -     |       |      | 1    | 1    |      | 1    | 1    | Dre  | vious | Interv | iew Y | ear  | 1    | 1    | 1    | 1    | 1    |      |
|-------|-------|------|------|------|------|------|------|------|-------|--------|-------|------|------|------|------|------|------|------|
|       |       | 2021 | 2020 | 2010 | 2019 | 2017 | 2016 |      |       |        |       |      | 2010 | 2000 | 2000 | 2007 | 2006 | 2005 |
|       |       | 2021 | 2020 | 2019 | 2018 | 2017 | 2010 | 2013 | 2014  | 2015   | 2012  | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2003 |
|       | Sub-  |      |      |      |      |      |      |      |       |        |       |      |      |      |      |      |      |      |
| Panel | Frame | 2    | 1    | 5    | 4    | 3    | 2    | 1    | 5     | 4      | 3     | 2    | 1    | 5    | 4    | 3    | 2    | 1    |
| 2010  | 1     |      |      |      |      |      |      |      |       |        |       |      |      |      |      |      |      |      |
| 2011  | 2     |      |      |      |      |      |      |      |       |        |       |      |      |      |      |      |      |      |
| 2012  | 3     |      |      |      |      |      |      |      |       |        |       |      |      |      |      |      |      |      |
| 2013  | 4     |      |      |      |      |      |      |      |       |        |       |      |      |      |      |      |      |      |
| 2014  | 5     |      |      |      |      |      |      |      |       |        |       |      |      |      |      |      |      |      |
| 2015  | 1     |      |      |      |      |      |      |      |       |        |       |      |      |      |      |      |      |      |
| 2016  | 2     |      |      |      |      |      |      |      |       |        |       |      |      |      |      |      |      |      |
| 2017  | 3     |      |      |      |      |      |      |      |       |        |       |      |      |      |      |      |      |      |
| 2018  | 4     |      |      |      |      |      |      |      |       |        |       |      |      |      |      |      |      |      |
| 2019  | 5     |      |      |      |      |      |      |      |       |        |       |      |      |      |      |      |      |      |
| 2020  | 1     |      |      |      |      |      |      |      |       |        |       |      |      |      |      |      |      |      |
| 2021  | 2     |      |      |      |      |      |      |      |       |        |       |      |      |      |      |      |      |      |
| 2022  | 3     |      |      |      |      |      |      |      |       |        |       |      |      |      |      |      |      |      |



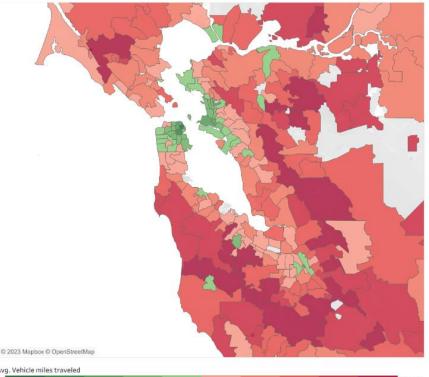
### Additional linked data

- Aggregate ACS measures: 2005-present
- Access Across America data: 2014-present
- EPA Smart Location Database: 2011, 2013, 2021
- Census Master Address File
- Social Security Administration Detailed Earnings Records
- Longitudinal Employer–Household Dynamics (LEHD)
- Future: other travel or health surveys



## Access available in 34 Federal Statistical Research Data Centers with Special Sworn









# What can we learn from these data?

# Q1: By how much can changes to the residential built environment reduce car commuting?

- Measure the change in commute VMT as a function of the change in the built environment.
- Use sample selection model to account for residential selfselection
- Compare to crosssectional estimates





40.000



## Q2: Does teleworking induce moves to lower-accessibility locations?

**Possible Telework Effects on Residential Relocation** 

|                      | Resampling Year      |                                                                     |  |  |  |
|----------------------|----------------------|---------------------------------------------------------------------|--|--|--|
| Base Year            | Not Teleworking (NT) | Teleworking (T)                                                     |  |  |  |
| Not Teleworking (NT) | Control              | New opportunity to move<br>to lower-accessibility<br>location       |  |  |  |
| Teleworking (T)      | Not Relevant         | Existing opportunity to<br>move to lower-<br>accessibility location |  |  |  |



# Q3: How does teleworking affect wage growth?

#### Expected Drivers of Teleworking Effect on Wage Growth

|                 | Resampling Year      |                                                      |  |  |  |
|-----------------|----------------------|------------------------------------------------------|--|--|--|
| Base Year       | Not Teleworking      | Teleworking                                          |  |  |  |
| Not Teleworking | Control              | Increased Job Selection                              |  |  |  |
| Teleworking     | Decreased Networking | Increased Job Selection<br>+<br>Decreased Networking |  |  |  |



# Q4: Who is leaving transit-rich areas, who is replacing them, and how do their commutes change?

|                   | Ends in:                |                                    |  |  |  |
|-------------------|-------------------------|------------------------------------|--|--|--|
| Starts in:        | Transit-Rich Area       | Transit-Poor Area                  |  |  |  |
| Transit-Rich Area | Control Group 1         | Potentially "Displaced"<br>Workers |  |  |  |
| Transit-Poor Area | Potential "Gentrifiers" | Control Group 2                    |  |  |  |

#### **Expected Drivers of Teleworking Effect on Wage Growth**



## What else should we be asking?

### Who else can use these data?





