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ABM Approach

Estimated from 

cross-sectional 

data

Implemented in 

an equibrium-

based simulation

Applied to 

predict change 

20+ years in 

future

Many advantages, but several risks: 

• Possible self-selection: I move to a walkable neighborhood 

because I like to walk.  

• Possible endogenity: Transit operator adds service to popular 

routes. 

• Missing habits and triggers: I started teleworking during the 

pandemic, and never went back. 



With possible consequences  

Bias in ridership 
forecasts for major 
US transit capital 
projects: 1987-2018. 

Hoque, et al 2024



We build models to predict 

change. Let’s start by observing 

the change we’re trying to predict. 

* Actually, there are a lot of reasons we build models 

(Eptstein 2008), but this one is pretty important. 



Panel of convenience

• For repeated cross-sections, there is a 

non-zero probability that the same unit is 

sampled in more than one year. 

• With a large enough cross-sectional 

sample, the “panel of convenience” 

becomes usable.

• Strategy used successfully in the Danish 

National Survey & Australian Census. 



American Community Survey (ACS)

• Annual survey of ~1.5% of US households 

with >90% response rates from 2005-

present.

• Includes home location, work location, 

usual commute mode, car ownership, etc. 

• Restricted-use data includes individual 

records with a personal identification key 

(PIK) assigned to >90% of records.  



Expected 

addresse

s 

resample
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Year Sub-

Frame

Final 
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in ACS 

Sampling 

Rate within 

Subframe

Expected Addresses Resampled from:

5 Years 

Prior

10 Years 

Prior

15 Years 

Prior
Any Year

2005 1 1,924,527 7.70% 0 0 0 0

2006 2 1,968,362 7.70% 0 0 0 0

2007 3 1,937,659 7.50% 0 0 0 0

2008 4 1,931,955 7.40% 0 0 0 0

2009 5 1,917,748 7.30% 0 0 0 0

2010 1 1,917,799 7.30% 140,490 0 0 140,490

2011 2 2,128,104 8.00% 157,469 0 0 157,469

2012 3 2,375,715 8.90% 172,452 0 0 172,452

2013 4 2,208,513 8.30% 160,352 0 0 160,352

2014 5 2,322,722 8.60% 164,926 0 0 164,926

2015 1 2,305,707 8.50% 163,013 163,585 0 326,598

2016 2 2,229,872 8.20% 174,505 161,406 0 335,910

2017 3 2,145,639 7.80% 185,306 151,137 0 336,443

2018 4 2,143,000 7.70% 170,056 148,761 0 318,816

2019 5 2,059,945 7.40% 171,881 141,913 0 313,795

2020 1 1,406,935 5.00% 115,285 95,890 96,226 307,402

2021 2 1,950,832 6.90% 153,861 146,839 135,817 436,517

2022 3 1,980,550 6.91% 148,343 164,250 133,964 446,558

Total 36,855,584 2,077,940 1,173,781 366,007 3,617,728



Result: Longitudinal commute data 

that are:

• Cheap!  

• Large sample

• Disaggregate

• Nationally representative…sort of. 



Inclusive of people living continously in 
the US over the panel period



Additional linked data

• Aggregate ACS measures: 2005-present

• Access Across America data: 2014-present

• EPA Smart Location Database: 2011, 2013, 2021

• Census Master Address File

• Social Security Administration Detailed Earnings 

Records

• Longitudinal Employer–Household Dynamics 

(LEHD) 

• Future: other travel or health surveys



Access available in 34 Federal Statistical 

Research Data Centers with Special Sworn 

Status



What can we learn from these 

data?



Q1: By how much can changes to the 

residential built environment reduce car 

commuting?

Figure 1 Annual Vehicle Miles Traveled per Household (45) 

• Measure the change 

in commute VMT as a 

function of the change 

in the built 

environment. 

• Use sample selection 

model to account for 

residential self-

selection

• Compare to cross-

sectional estimates



Q2: Does teleworking induce moves to 

lower-accessibility locations?



Q3: How does teleworking affect wage 

growth?



Q4: Who is leaving transit-rich areas, who is 

replacing them, and how do their commutes 

change?



What else should we be asking? 

Who else can use these data? 


