Using social media data to investigate the spatial and temporal heterogeneity in the perception of autonomous vehicles

# 3<sup>rd</sup> Symposium on Activity-Based Modelling

Technical University of Munich 10<sup>th</sup> December 2024

Eeshan Bhaduri Charisma F Choudhury







Investigating the global perception of autonomous vehicles using social media data

socio-demographic information

**ABM Symposium** 

Framework

#### Research questions

How heterogeneous are the public sentiments towards AV?

- How have the major AV events impacted public а sentiments over time?
  - Identifying peaks and troughs
  - Relation with major AV events and assessing impact potential
- To what extent do the public sentiments differ across various countries?
- Identifying sentiment polarity across different countries
- Clustering countries based on all three polarities
- What are the key themes of public discourse?
  - Identifying the major AV related concerns and enthusiasm themes

а



# Data insights



GB CA

ZA SE

NG

#### **Descriptive analysis**





Spatial variance: Filtered 91,429 geo-tagged tweets from 11 countries (at least with 1 million Twitter users)

English speaking: Australia (AU), Canada (CA), United Kingdom (GB), United States (US) Lingua franca: India (IN)

High English proficiency: Germany (DE), Netherlands (NL), Sweden (SE).



UNIVERSITY OF LEEDS

Fig: Number of geo-tagged tweets across study countries during 2010-2021

Time series analysis

Clustering analysis

# VADER: Benchmark model

Key advantages:

- **Pre-defined lexicons** (No training requirement)
- Heuristics based
- Easier and Quicker to implement
- Achieves nearly 50% prediction accuracy

Table: Classification results of VADER

| Sentiment<br>Class | Precision | Recall | F1-Score | Support |  |
|--------------------|-----------|--------|----------|---------|--|
| Positive           | 0.5       | 0.48   | 0.49     | 214     |  |
| Neutral            | 0.65      | 0.52   | 0.57     | 466     |  |
| Negative           | 0.35      | 0.5    | 0.42     | 244     |  |
| Accuracy           |           |        | 0.50     | 924     |  |
| Macro Avg          | 0.5       | 0.5    | 0.49     | 924     |  |
| Weighted Avg       | 0.53      | 0.5    | 0.51     | 924     |  |

Time series analysis

Clustering analys

# VADER: Benchmark model

Key advantages:

- Pre-defined lexicons (No training requirement)
- Heuristics based
- Easier and Cheaper to implement
- Achieves nearly 50% prediction accuracy

#### Table: Classification results of VADER

| Sentiment<br>Class | Precision | Recall | F1-Score | Support |
|--------------------|-----------|--------|----------|---------|
| Positive           | 0.5       | 0.48   | 0.49     | 214     |
| Neutral            | 0.65      | 0.52   | 0.57     | 466     |
| Negative           | 0.35      | 0.5    | 0.42     | 244     |
| Accuracy           |           |        | 0.50     | 924     |
| Macro Avg          | 0.5       | 0.5    | 0.49     | 924     |
| Weighted Avg       | 0.53      | 0.5    | 0.51     | 924     |

# Why does not it suit our need?

- Inability to train for context-specific words and sentiments
  - Look out for words showing sarcasm and mixed emotions
- Limited ability to counter class imbalance and no off-topic class
  - Off-topic is minority class with 7.3% in annotated dataset

"Blameless self-driving car? Who is to blame, I wonder?"

# "AVs are ssso totally safe!"

**VADER**: Valence Aware Dictionary and Sentiment Reasoner

#### Sentiment analysis

Machine learning models

# **Solution 1: Manual labelling**

- Works better with a significant share of Tweets being mixed emotion and off-topic
- 3 annotators achieving Fleiss' Kappa score 0.52

# **Solution 2: Dataset augmentation**



- ML models usually perform better with larger training dataset
- Augmentation (translation-based) provides better data balance



Fig: Frequency of sentiments in annotation datasets

#### ABM Symposium

10

RF Confusion Matrix-Augmented dataset

# Sentiment analysis

lab

P

abel

Machine learning models



IT\$

UNIVERSITY OF LEEDS



Fig: Confusion matrices of three ML models- RF, SVM and NB (from top)

# RF + SVM + NB

- Used 80%-20% training-test split
- All 3 models perform best with augmented annotation dataset
  - **Data balance**
  - **Expert** annotation

**RF**: Random Forest SVM: Support Vector Machine **NB**: Naïve Bayes

Time series analysis

Clustering analysis

# Large language models: BERT

- Used 80%-20% training-test split
- Performs better than ML models
  - Fine-tuning (annotations) on top of pre-trained BERT model
  - Bi-directional nature better captures dependencies (Masked language modelling and next sentence prediction)

BERT: Bidirectional Encoder Representations from Transformers (BERT)



UNIVERSITY OF LEEDS

#### Table: Classification results of BERT

|              | CrowdFlower data |        |          | Annotated dataset |        |          | Augmented annotated dataset |        |          |
|--------------|------------------|--------|----------|-------------------|--------|----------|-----------------------------|--------|----------|
| Index        | Precision        | Recall | F1-score | Precision         | Recall | F1-score | Precision                   | Recall | F1-score |
| Negative     | 0.634            | 0.529  | 0.576    | 0.507             | 0.761  | 0.609    | 0.787                       | 0.700  | 0.741    |
| Neutral      | 0.817            | 0.861  | 0.838    | 0.626             | 0.828  | 0.713    | 0.763                       | 0.678  | 0.718    |
| Positive     | 0.69             | 0.704  | 0.697    | 0.75              | 0.061  | 0.113    | 0.670                       | 0.839  | 0.745    |
| Off-topic    | 0.417            | 0.125  | 0.192    | 0                 | 0      | 0        | 0.965                       | 0.954  | 0.960    |
| Accuracy     |                  |        | 0.763    |                   |        | 0.575    |                             |        | 0.788    |
| macro avg    | 0.639            | 0.555  | 0.576    | 0.471             | 0.413  | 0.359    | 0.796                       | 0.793  | 0.791    |
| weighted avg | 0.753            | 0.763  | 0.755    | 0.592             | 0.575  | 0.499    | 0.795                       | 0.788  | 0.788    |

Investigating the global perception of autonomous vehicles using social media data

Time series analysis

Clustering analysis

- Captures the major events
  - Major crashes show high impact of negative incidents
- Indicates gradual decline in AV interest
  - slow dying of interest for AVs
  - people getting more sceptical after accidents
- Highly dominated by USA events

| Month            | Positive sentiment |     | Negative sentiment |              | Possible causes/ Events                                                       |  |  |  |
|------------------|--------------------|-----|--------------------|--------------|-------------------------------------------------------------------------------|--|--|--|
|                  | All                | USA | All                | USA          |                                                                               |  |  |  |
| May 2012         | √                  | √   |                    |              | Google revealed its AV prototype + Nevada became first state issue AV license |  |  |  |
| February<br>2015 | √                  |     |                    |              | UK allowed AV testing                                                         |  |  |  |
| July 2016        |                    |     | $\checkmark$       | $\checkmark$ | Tesla autopilot crash in Florida                                              |  |  |  |
| March 2018       |                    |     | $\checkmark$       | $\checkmark$ | Uber pedestrian crash in Arizona                                              |  |  |  |







Investigating the global perception of autonomous vehicles using social media data

Sentiment analysi

Time series analysis

Clustering analysis









Fig: K-means clustering based on normalised polarity scores

# Topic modelling

ABM Symposium







- Used both Gensim and BERTopic packages [work in progress]
- Disentangling time and country specific effects
- Decided 8 key topics based on coherence score (Gensim package)
  - **2 major topics** and other 6 overlapping



Fig: Inter-topic distance map and Keywords for each topic

# Topic modelling

Identification of topic

Key themes

**Documents and Topics** 



Fig: Topic visualisation (2018 tweets)

- Key discussion themes can be grouped into: (1) AV enthusiasm and (2) AV concern
- AV enthusiasm includes-
  - Technology/ Innovation (id: 1)
  - Automation advantages (safety/ connectedness) (id: 2,

#### 3, 8)

- Service types and infrastructure (id: 3)
- AV concern includes-
  - Accident (id: 4)
  - Ethical and moral responsibility (id: 9)
  - Critical decision and dilemmas (id: 9)
- Please note that topic\_0 is outlier (consists of words which don't add to deciphering underlying theme)
- Topic\_6 could be off topic (tweets related to driverless train services)

Ongoing work:

- 1. How have the topics evolved over the years?
  - Correlation with the stage of implementation?
- 2. How different are the topics for countries within the same spatial cluster?
- 3. Developing frameworks on how the findings can be integrated with traditional travel behaviour models



**ABM Symposium** 



# Questions?

c.f.choudhury@leeds.ac.uk

Codes: https://github.com/arashk1990

NEXt generation activity and travel behavioUr modelS: Bringing together choice modelling, data science and ubiquitous computing (MR/T020423/1)



Future Leaders Fellowships

Time series analysis

Support Vector Machine: Best performance

#### 

#### ABM Symposium







#### Table: Classification results of SVM

|              | CrowdFlower data |        |          | Annotated dataset |        |          | Augmented annotated dataset |        |          |
|--------------|------------------|--------|----------|-------------------|--------|----------|-----------------------------|--------|----------|
| Index        | Precision        | Recall | F1-score | Precision         | Recall | F1-score | Precision                   | Recall | F1-score |
| Negative     | 0.449            | 0.157  | 0.233    | 0.353             | 0.158  | 0.218    | 0.813                       | 0.691  | 0.747    |
| Neutral      | 0.716            | 0.886  | 0.792    | 0.518             | 0.914  | 0.661    | 0.625                       | 0.655  | 0.640    |
| Positive     | 0.623            | 0.480  | 0.542    | 0.632             | 0.231  | 0.338    | 0.718                       | 0.782  | 0.749    |
| Off-topic    | 0.333            | 0.029  | 0.054    | 0.000             | 0.000  | 0.000    | 0.965                       | 0.976  | 0.971    |
| Accuracy     |                  |        | 0.687    |                   |        | 0.515    |                             |        | 0.775    |
| macro avg    | 0.530            | 0.388  | 0.405    | 0.376             | 0.326  | 0.304    | 0.780                       | 0.776  | 0.777    |
| weighted avg | 0.656            | 0.687  | 0.654    | 0.472             | 0.515  | 0.437    | 0.779                       | 0.775  | 0.775    |

#### Investigating the global perception of autonomous vehicles using social media data