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Evaluating The Placement Of Roadside Cameras In Urban Intersections Towards 

Enhanced Collaborative Perception

Study Objectives

This study addresses research gaps by using synthetic data from a

3D virtual environment to assess roadside camera positioning,

focusing on static and dynamic occlusions effects. Through data

generated in Unity, the research aims to enhance road safety and

VRUs detections (Figure 1).

Motivation

Current autonomous vehicle (AV) systems are constrained by the

limitations of single-vehicle perception, as sensor ranges and fields of

view are often hindered by occlusions—static or dynamic obstructions

that restrict environmental awareness. The emerging integration of

Cooperative Autonomous Vehicles (CAVs) and Vehicle-to-Everything

(V2X) technologies offers a pathway to enhance situational

awareness through collaborative perception (CP), which enables AVs

to receive and share data from roadside cameras and other

infrastructure. By addressing occlusion challenges, these

technologies advance the goal of Vision Zero1—eliminating road

fatalities—while paving the way for more reliable autonomous

mobility systems in complex real-world environments.

Research Question

With the consideration of VRUs, how can synthetic data generated in

a 3D environment be used to evaluate the placement of roadside

cameras regarding the effects of occlusions?
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Figure 1: The study objectives.

Methodology

The study’s evaluation process has two phases: a preliminary phase

to assess the method’s viability and an extensive phase to conduct a

thorough evaluation with increased simulation replications (Figure 2).

Two simulation-based methods are used to examine synthetic data

from Unity for roadside camera placement analysis: Method 1: Record

then Detect by YOLO, and Method 2: Dual-Camera.
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Figure 2: The evaluation approach of the study.

Method 1: Concept

YOLOv5n's pre-trained model is employed to process Unity-captured

videos, leveraging its capabilities in accurately detecting and

classifying vehicles in real-world environments.

Method 2: Concept

This method aims to isolate and analyse specific objects, such as

vehicles and bicycles, that are impacted by dynamic and static

occlusion. Using a 'Dual-Camera' setup—one camera capturing a

normal roadside view and the other focusing solely on highlighted

target objects—the approach enables frame-by-frame pixel analysis

(Figure 3). Target objects are assigned a bright colour for clear

differentiation and placed under a separate layer in Unity. This setup

allows precise tracking and evaluation of roadside camera placement

with respect to occlusion effects.

The total average occlusion percentage metric is developed to

evaluate the effectiveness of each roadside camera placement per

simulation run. It ranges between 0% and 100% indicating totally

visible and totally non-visible targeted objects, respectively.

Method 1: Results

The results showed that the pre-trained model largely failed to detect

vehicles in the videos from both deployment positions, with an

aggregated average of 74.09% of vehicles missing entirely. For the

few detected vehicles, class assignment accuracy was also low, with

an overall accuracy of just 14.29%. This underscores a key limitation

of relying on a pre-trained model, which struggled to detect

synthetically generated vehicles even without occlusion effects in the

simulated scenarios.

Method 2: Results

In both preliminary and extensive phases (Figures 4 and 5) ,12 and 30

simulation runs were conducted per roadside camera position,

respectively. Camera position (B) consistently recorded lower median

occlusions of 2.45% and 4.02% for preliminary and extensive phases

respectively, compared to position (A), which showed higher

susceptibility to occlusions of 24.75% and 18.06%. The results confirm

the dual-camera method's effectiveness in evaluating occlusion

impacts and highlight the limitations of side-of-road camera

placements.

Figure 3: A snapshot showing typical views of the dual-camera.

Figure 4: Preliminary phase results. Figure 5: Extensive phase results.

Conclusion:

This study demonstrated the superiority of the dual-camera method in

evaluating roadside camera placements, particularly regarding

occlusion impacts in traffic monitoring. Using synthetic data from a 3D

virtual environment with the Dual-Camera method effectively capturing

both static and dynamic occlusions. Findings provide insights for

optimizing camera placements to improve vehicle and VRU detection

accuracy. The study also fills the research gaps by considering the 3D

space, both occlusion types, and VRU.
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